TOPICS IN COMPLEX ANALYSIS @ EPFL, FALL 2024 HOMEWORK 5

MATHIAS BRAUN AND WENHAO ZHAO

Homework 5.1 (Examples of infinite products of functions*). Examine for which $z \in \mathbb{C}$ the following products converge absolutely and determine the largest open set $U \subset \mathbb{C}$ on which they converge locally normally.

a.
$$\prod_{n=1}^{\infty} (1+z^n).$$
b.
$$\prod_{n=1}^{\infty} \left[1 + \frac{z^n}{n!}\right].$$
c.
$$\prod_{n=1}^{\infty} \cos(2^{-n}z).$$

Homework 5.2 (Further practice on infinite products). Show the product

$$H(z) = z \prod_{n=1}^{\infty} \left(1 + \frac{z}{n} \right) e^{-z/n}$$

converges locally normally on \mathbb{C}^1 .

Homework 5.3 (Sine product formula). The goal of this exercise is to derive the following product formula for every $z \in \mathbb{C}$:

$$\sin(\pi z) = \pi z \prod_{n=1}^{\infty} \left[1 - \frac{z^2}{n^2} \right].$$

This will be done in several steps.

a. Use the partial fraction decomposition of $\pi^2/\sin^2(\pi z)$ from Homework 3.2 to show the following identity for every $z \in \mathbb{C} \setminus \mathbb{Z}$, with a suitable notion of convergence for the series on the right hand side²:

$$\pi \cot(\pi z) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}.$$

- b. For $n \in \mathbb{N}$, define the function $f_n \colon \mathbb{C} \to \mathbb{C}$ by $f_n(z) := 1 z^2/n^2$. Compute the logarithmic derivative f'/f for the assignment $f(z) := \pi z \prod_{n=1}^{\infty} f_n(z)$.
- c. Conclude by comparing suitable terms.

Date: October 28, 2024.

¹One can show that the limit $\gamma:=\lim_{n\to\infty}\sum_{k=1}^n 1/k - \log(n)$ exists (which is called *Euler-Mascheroni constant*). Then $\Gamma(z):=e^{-\gamma z}/H(z)$ yields an alternative representation of the Eulerian Γ-function for every $z\in \mathbf{C}$ with $\Re z>0$.

²**Hint.** You may use the following fact without proof. If $D \subset C$ is a domain, $(f_n)_{n \in \mathbb{N}}$ is a sequence of continuously differentiable functions $f_n : D \to C$, $f : D \to C$ is continuously differentiable, $f_n(z_0) \to f(z_0)$ as $n \to \infty$ for some $z_0 \in D$, and $f'_n \to f'$ locally uniformly as $n \to \infty$, then $f_n \to f$ locally uniformly as $n \to \infty$.

2 HOMEWORK 5

Homework 5.4 (Consequences of the sine product formula). Use the product formula from the previous exercise to show the following statements.

a.
$$\frac{\pi}{2} = \prod_{n=1}^{\infty} \frac{4n^2}{4n^2 - 1}$$
.
b. $\cos(\pi z) = \prod_{n=1}^{\infty} \left[1 - \frac{4z^2}{(2n-1)^2}\right]$.
c. $\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$ 3.

³**Hint.** Use a Taylor expansion.